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Mechanical and Langevin thermostats: Gulton staircase problem

Toyonori Munakata
Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606, Japan

~Received 14 October 1998!

Dynamics in a Gulton staircase is considered based on a model in which many particles, coupled through an
average velocity, are in contact with a Gaussian thermostat. Computer simulation gives information on entropy
production, the stationary mass current, and distribution functions of both particle positions and momenta. A
Langevin thermostat is also considered for the sake of comparison with a mechanical thermostat.
@S1063-651X~99!09105-9#

PACS number~s!: 05.20.Gg, 05.40.Fb
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Recently a lot of attention has been paid to structures
properties of mechanical thermostats, in connection w
nonequilibrium stationary states, nonlinear response,
other ~fundamental! problems such as Loschmidt’s parad
@1–3#. Dynamics in a Gulton staircase is investigated inte
sively because of its basic importance and simplicity by H
lian and co-workers with use of the Nose-Hoover~NH! ther-
mostat, with special emphasis put on a nonequilibri
stationary state produced by an external force@3–5#. More
concretely, time evolution of the system they studied, he
after to be called the NH model, is described by

dq/dt5p, ~1!

dp/dt5Fp~q!1Fext2nzp, ~2!

dz/dt5n~p2/T21!, ~3!

where we set both mass of a particle and the Boltzm
constant equal to one. In Eq.~2! n is a parameter controlling
coupling strength between a particle and the thermostat
Fp(q)52dVp(q)/dq denotes the space-periodic force~with
periodicity 2p! derived from the potentialVp(q). Techni-
cally, a periodic boundary condition is employed; thus a p
ticle leaving the range 0<q<2p at q52p enters the range
at q50 with the same momentum.z and T denote a dy-
namic friction and temperature of the system, respectiv
The particle moves on average in the direction of the ex
nal forceFext and main concern is put around the noneq
librium stationary state with mass-current and positive
tropy production.

Following Holian, Posch, and Hoover,@4# we briefly sum-
marize results obtained for the NH model. Defining the to
~the system plus heat bath! energyE by

E5p2/21Vp~q!1Tz2/2, ~4!

it readily follows from Eqs.~1!–~4! that

dE/dt52Tnz1Fextp[dQ/dt2dW/dt, ~5!

where dQ is supposed to represent the heat giv
to the ~total! system anddW denotes the work done
by the system. The statistical entropySsta(t)[
2*dpdqdz f(q,p,z;t)ln f(q,p,z;t) changes in time as
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dSsta~ t !/dt5T21^dQ/dt&52n^z&5^L&, ~6!

where^...& denotes the ensemble average overf, and the rate
of expansionL of the phase space in Eq.~6! is defined by
L[](dq/dt)/]q1](dp/dt)/]p1](dz/dt)/]z. Computer
experiment on the NH model showed that@4# ~i! the average
^z&st in an nonequilibrium stationary state is positive, and~ii !
the stationary work̂ dW/dt&st52Fext^p&st coincides with
^dQ/dt&st52Tn^z&st within a limit of numerical error, com-
ing from the stationarity of the energyd^E&st/dt50.

Result~i! means that the phase-space volume suppor
the distribution functionf (q,p,z;t) is continually shrinking,
ultimately leading to a fractal support with the statistical e
tropy going to minus infinity. Also result~ii ! shows that the
entropy production rate, which is defined to b
2^dQ/dt&st/T5n^z& @6#, gives information on transpor
properties such as stationary mass current or mobility~in the
limit Fext→0) @7#. With all these interesting properties, th
NH model seems to have some problems. First it is remar
that if one expresses momentum asp5^p&1dp, tempera-
ture T should be related to the average of fluctuation (dp)2,
instead of top2 as in the NH model. Second, we consid
that in discussing thermodynamics of a system in con
with a thermostat, it is more natural to discuss time variat
of the internal energyU[p2/21Vp(q) rather than the tota
energy~4!, which includes that of a thermostat. For the N
modeldU/dt5Fextp2nzp2, which becomesdE/dt only af-
ter replacingp2 by its averageT. In our model proposed
below, Eq.~4! is replaced by Eq.~12!, which precisely rep-
resents the first law of thermodynamics@8#.

Based on these considerations we propose a model w
consists ofN particles, each moving under the action of t
periodic forceFp(q)52dVp(q)/dq and the external force
Fext at temperatureT. The constraint,

( ~pi2pav!
2/N5T, S pav[( pi /ND , ~7!

can be easily incorporated, with use of the Gauss’ princi
of least constraint, into equations of motion as@1#

dqi /dt5pi , ~8!

dpi /dt5Fp~qi !1Fext2z~pi2pav!, ~9!
5045 ©1999 The American Physical Society
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z5( ~pi2pav!Fp~qi !/~NT!. ~10!

We call Eqs.~8!–~10! the Gauss model. The heatdQ sup-
plied by a thermostat is defined to be the work done b
thermostat, which is expressed asdQ52z((pi2pav)dqi ,
thus

dQ/dt52NTz5TL, ~11!

where the rate of expansionL of the phase space is easi
calculated for the Gauss model as2Nz. Defining the inter-
nal energy byU5(@pi

2/21Vp(qi)#, we readily see that

dU/dt5NpavF
ext2NTz52dW/dt1dQ/dt, ~12!

which expresses the first law of thermodynamics. The sta
tical entropy Ssta(t) for the distribution function
f ($qi%,$pi%;t), defined similarly as just above Eq.~6!, satis-
fies

dSsta~ t !/dt52N^z&5T21d^Q&/dt[dSth~ t !/dt, ~13!

where we have introduced the thermal entropySth in Eq.
~13!.

We solved numerically Eqs.~8!–~10! for Vp(q)51
2cos(q) with use of the Runge-Kutta algorithm. InitiallyN
particles’ positions are chosen from a uniform distribution
the range~0,2p!. On the other hand,N particles’ momenta
are first taken from a Maxwellian distribution with zer
mean at temperatureT and then adjusted so as to satisfy t
relation~7! ~with pav50) exactly. In Figs. 1 and 2 we show
pav(t) andz(t) as a function of time for the system withN
510 000 andT51. For 0,t,200 we putFext50 and the
system attains an equilibrium state aroundt5100. At t
5200 we switch on an external forceFext50.3. The friction
constantz and the average momentumpav rapidly respond to
the field. In a nonequilibrium stationary state, the~time! av-
erageŝ pav&st and ^z&st are 0.8133 and 0.2441, respective
thus ensuring the overall constancy of the internal energU
@see Eq.~12!#. In Fig. 3 we plot a histogramHq(t) of posi-
tion of N510 000 particles at three time windows,t5179
@Fig. 3~a!#, 209 @Fig. 3~b!#, and 229@Fig. 3~c!#. For t5179

FIG. 1. Time variation of the average momentumpav(t). For t
>200 an external forceFext50.3 is exerted on particles.
a

s-

the system is in equilibrium and we observe a broad pea
population aroundq50 ~52p! whereVp(q)512cos(q) is
minimum. At t5209 the system is under effects of rath
strong external force and the distribution has a broad bu
aroundq51. WhenFext.0, particles are on average movin
in the positive direction~Fig. 1! and it is natural that particles
pile up in a region where particles are just going to colli
with the potential barrier ofVp(q) before jumping over it.
This bump is also observed for a stochastic thermosta
will be shown later~Fig. 5!. As time still goes on we observ
a rather spiky distribution@Fig. 3~c!#, meaning that the
10 000 particles are confined to a small area in the confi
ration space. In fact it is observed that fort.300 Hq(t)
consists of two spikes, which represent two clusters of p
ticles, one consisting of about 4000 particles, moving w
the velocityv1.2 and the other 6000 particles located ne
the originq50 with the velocityv2.0 ~see Fig. 4!. We note
that this is consistent with Eq.~7! with T51 and ^pav&st
.0.8. As for a histogramHp(t) in a momentum space w
observe quite similar tendency. That is,Hp(t), which is
nearly Maxwellian fort,200, is shifted to positive direction
and becomes very spiky after introduction of an exter
force. Finally for t.300 we observe only two bins whic
contain weight~see Fig. 4!. What is presented here in Fig.
together with Fig. 4 shows that the support for the distrib
tion function is shrinking continually, in accordance with th
positivity of ^z&st which is related to the rate of expansionL
of a phase space viaL52Nz. We remark, however, that th
drastic change in the distribution~or histogram! does not
have any apparent effects on behavior of observables suc
the average momentumpav(t), Fig. 1, as was noted by Ho
lian, Posch, and Hoover@4#. Based on this fact we presen
the following argument on the entropy productions. First
we decompose entropy change~in time! dSof the system as
contribution from heat flow from a reservoirdSth @see Eq.
~13!# and the one from irreversibility~dissipation! dSi , dS
5dSth1dSi . Since one may putdS50 in a stationary state
it yields s5dSi /dt52dSth /dt. For similar argument to ob-
tain the relations52dSsta/dt, see Ref.@6#.

Thus far we considered effects of some mechanical th
mostats~the Nose-Hoover and Gaussian thermostats!, for
which it turned out that the statistical entropySsta(t) de-

FIG. 2. Time variation of the frictionz(t), Eqs.~9! and ~10!.
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creased in time like2st in a nonequilibrium stationary
state. Below we briefly consider the Gulton staircase in c
tact with the Langevin thermostat in order to contrast m
chanical thermostats to stochastic thermostats@9#. The
Langevin equation for a particle in a Gulton staircase
given by

FIG. 3. The histogramHq(t) of position ofN510 000 particles
at several time windows,t5179 ~a!, 209 ~b!, and 229~c!.
-
-

s

dq/dt5p, ~14!

dp/dt5Fp~q!1Fext2zp1R~ t !, ~15!

with the following fluctuation-dissipation relation:

^R~ t !R~ t8!&52zTd~ t2t8!. ~16!

The Fokker-Planck equation for the Langevin model, E
~14!–~16!, is

] f ~q,p;t !/]t52]~p f !/]q2]„@2zp1Fp~q!1Fext# f …/]p

1zT]2f /]p2. ~17!

Heat flow from the Langevin thermostat to a particle is d
fined, as for the Gauss model, to bedQ5@2zp1R(t)#dq,
which is expressed from Eq.~15! as

dQ5d„p2/21Vp~q!…2Fextdq[dU1dW, ~18!

wheredU denotes the increment in the internal energy a
dW denotes the work done by the system. For the statist
entropySsta(t), we can derive from Eq.~17!,

dSsta~ t !/dt2~1/T!@d^U&~ t !/dt1d^W&~ t !/dt#

[dSsta/dt2dSth /dt

5~z/T!E dpdq@T~] f /]p!/A f 1pA f #2>0. ~19!

Equations~18! and~19! may be regarded as the first and t
second law of thermodynamics for the Langevin mod
Equation ~19! @also Eq. ~21! below# should be compared
with Eq. ~13!, which states thatSsta is the same withSth . For
the Langevin thermostat we havedSsta(t)/dt50 in a station-
ary state, because the distribution functionf (q,p;t) ap-
proaches a nonfractal stationary onef st(q,p). From Eqs.
~18! and ~19! we see thusdSsta(t)/dt→0, d^U&(t)/dt→0
and 2d^W&(t)/dt5Fext^p&st.0. This means that the ther
mal entropy behaves like2st for a stochastic thermostat.

FIG. 4. The histogramHq(t) ~thin curve! and Hp(t) ~thick
curve! at t5310.
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In the overdamped limitz@1, to be called the Smolu
chowski model for the reason stated below, we putdp/dt
50 in Eq. ~15! and have a Smoluchowski equation,

] f ~q;t !/]t52z21$]„@Fp~q!1Fext# f …/]q2T]2f /]q2%

52] j ~q;t !/]q. ~20!

If we absorbz in Eq. ~20! in a new time scale, we have Eq
~16! of Ref. @9#. We have from Eq.~20!,

dSsta~ t !/dt2~1/T!d@^U&~ t !1^W&~ t !#/dt

5~zT!21^@dVt~q!/dq1Td ln f /dq#2&, ~21!

where the internal energyU is now defined byU5Vp(q)
andVt[Vp2Fextq as before@10#.

From the above it is seen that as for the thermal entr
Sth(t) the stochastic and mechanical reservoirs give the s
asymptotic behavior ast→`. However for the statistical en
tropy, we haveSst(t);2st ast→` for the mechanical res
ervoir anddSst(t)/dt→0 as t→` for the stochastic reser
voir. Finally we show in Fig. 5 the stationary distributio
f (q,t→`) which is obtained by solving the equationj
5const with j defined by Eq.~20! @9#. As was seen in Fig
3~b! for the Gauss model, we see a bump in the region wh
particles are just in front of the potential barrier whose cen
is located atq5p. This becomes more salient as the te
perature goes down. Thus the piling up of particles in
Gulton staircase is seen to be a rather general aspec
dynamics.

Summarizing this paper, we have proposed the Ga
model, Eqs.~7!–~10!, as a mechanical thermostat for th
Gulton staircase and compared it with the Langevin therm
stat. The Gauss model enables us to properly introduce
peratureT and formulate the law of thermodynamics cons
tently. As expected we observed from numerical simulatio
positive average friction̂z&st ~Fig. 1! and the mass curren
~Fig. 2!. We found that the phase space shrinks in the cou
of time very rapidly leading finally to only two clusters eac
composed of many particles~see Fig. 4!. At this stage of
time evolution, the whole dynamics is reduced to a probl
of a few or several degrees of freedom. As for the entro
production rates, it is defined, for both a mechanical and
-
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Langevin thermostat, in terms of the heatdQ absorbed by the
system ass52T21dQ/dt[2dSth /dt. For a mechanical
model,s is also given in terms of the statistical entropySsta
from Eq. ~13!. Finally it is remarked that the clustering phe
nomenon mentioned above, which has gathered lots of at
tion recently in connection with synchronization or mo
generally with population dynamics of coupled oscillato
@11#, shows that apparently a rather complex-looking pro
lem turns out to be simple at the nonequilibrium stationa
state, on which current interest is concentrated@6#. In con-
trast with stochastic thermostats, studies on properties of
chanical thermostats may be said to have just begun
many fundamental insights on statistical mechanics are
pected to be revealed in the near future.

We have benefited greatly from discussions with K. K
tahara at an early stage of this study. This paper was s
ported by the Japanese Grant-in-Aid for Science Rese
Fund from the Ministry of Education, Science, and Cultu

FIG. 5. Stationary distribution functionf st(q) obtained from the
Smoluchowski equation~20!. The dotted curve represents the equ
librium ~canonical! distribution forFext50 and the solid curve rep
resents the nonequilibrium distribution forFext50.3 atT51. The
dashed curve is for the caseFext50.3 but at lower temzperatureT
50.1.
. A

t.
. E
@1# D. J. Evans and G. P. Morriss,Statistical Mechanics of Non
equilibrium Liquids~Academic, New York, 1990!.

@2# W. G. Hoover,Computational Statistical Mechanics~Elsevier,
Amsterdam, 1991!.

@3# B. L. Holian, W. G. Hoover, and H. A. Posch, Phys. Rev. Le
59, 10 ~1987!.

@4# B. L. Holian, H. A. Posch, and W. G. Hoover, Phys. Rev.
42, 3196~1990!.

@5# W. G. Hoover, H. A. Posch, B. L. Holian, M. J. Gillan, M
Mareschal, and C. Massobrio, Mol. Simul.1, 79 ~1987!.

@6# D. Ruelle, J. Stat. Phys.85, 1 ~1996!; G. Gallaavotti and E. G.
D. Cohen,ibid. 80, 831 ~1995!.
.

@7# D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev
42, 5990~1990!.

@8# For the heatdQ absorbed by the system, see Eq.~11! for a
Gaussian thermostat and Eq.~18! for a Langevin thermostat.

@9# T. Munakata, A. Igarashi, and T. Shiotani, Phys. Rev. E57,
1403 ~1998!.

@10# We note that the workdW52Fextdq done by the system was
included in the energydE5dU1dW in Ref. @9#. Of course,
discussions on entropy production developed there is intac

@11# Y. Nakamura, F. Tominaga, and T. Munakata, Phys. Rev
49, 4849~1994!, and the references cited therein.


