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Mechanical and Langevin thermostats: Gulton staircase problem

Toyonori Munakata
Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606, Japan
(Received 14 October 1998

Dynamics in a Gulton staircase is considered based on a model in which many particles, coupled through an
average velocity, are in contact with a Gaussian thermostat. Computer simulation gives information on entropy
production, the stationary mass current, and distribution functions of both particle positions and momenta. A
Langevin thermostat is also considered for the sake of comparison with a mechanical thermostat.
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Recently a lot of attention has been paid to structures and dSt)/dt=T XdQ/dty=—1(z)=(A), (6)
properties of mechanical thermostats, in connection with

nonequilibrium Stationary states, nonlinear response, anﬂ/here<u_> denotes the ensemble average dva'nd the rate
other (fundamental problems such as Loschmidt's paradox of expansionA of the phase space in E¢) is defined by
[1-3]. Dynamics in a Gulton staircase is investigated inten-p = 9(dq/dt)/dq+ a(dp/dt)/ap+ d(dzZ/dt)/dz. Computer
sively because of its basic importance and simplicity by Ho-experiment on the NH model showed tit (i) the average
lian and co-workers with use of the Nose-HooWlH) ther- () in an nonequilibrium stationary state is positive, diny
mostat, with special emphasis put on a nonequilibriumhe stationary work(dW/dt)s= — F¥p), coincides with
stationary state produced by an external fdi8eS]. More  (qq/dt)= — Tw(z)4 within a limit of numerical error, com-
concretely, time evolution of the system they studied, hereyng from the stationarity of the energy(E)g/dt=0.

after to be called the NH model, is described by Result(i) means that the phase-space volume supporting
the distribution functiorf(q,p,z;t) is continually shrinking,

do/dt=p, @) ultimately leading to a fractal support with the statistical en-
tropy going to minus infinity. Also resulii) shows that the
dp/dt=Fp(q)+F—vzp, (20 entropy production rate, which is defined to be
—(dQ/dt)s/T=1(z) [6], gives information on transport
dz/dt=v(p*T-1), (3)  properties such as stationary mass current or molititghe

limit F®'-0) [7]. With all these interesting properties, the

where we set both mass of a particle and the BoltzmanmH model seems to have some problems. First it is remarked
constant equal to one. In E(®) v is a parameter controlling that if one expresses momentum @s (p)+ op, tempera-
coupling strength between a particle and the thermostat an@re T should be related to the average of fluctuatiop),
Fp(g) =—dV,(q)/dq denotes the space-periodic for@éth  instead of top? as in the NH model. Second, we consider
periodicity 2m) derived from the potentiaV/,(q). Techni-  that in discussing thermodynamics of a system in contact
cally, a periodic boundary condition is employed; thus a parwith a thermostat, it is more natural to discuss time variation
ticle leaving the range 8 q=2m atq=2m enters the range of the internal energy) =p2/2+V,(q) rather than the total
at @=0 with the same momentum.z and T denote a dy- energy(4), which includes that of a thermostat. For the NH
namic friction and temperature of the system, respectivelymodeldU/dt=F®'— vzp?, which becomeslE/dt only af-
The particle moves on average in the direction of the exterter replacingp? by its averageT. In our model proposed
nal force F®! and main concern is put around the nonequi-below, Eq.(4) is replaced by Eq(12), which precisely rep-
librium stationary state with mass-current and positive enresents the first law of thermodynami@&.
tropy production. Based on these considerations we propose a model which

Following Holian, Posch, and Hoovéd#] we briefly sum-  consists ofN particles, each moving under the action of the
marize results obtained for the NH model. Defining the totalperiodic forceF ,(q) = —dV,(q)/dq and the external force

(the system plus heat batanergyE by Fe at temperaturd. The constraint,

E=p2/2+V,(q)+TZ/2, (4)

2 (pi—pa)?/N=T, (pavEZ p/NJ, (D)
it readily follows from Eqgs(1)—(4) that
dE/dt= — Tvz+Fp=dQ/dt—dW/dt (5) can be easily incorporated, with use of the Gauss’ principle
' of least constraint, into equations of motion[a$

where dQ is supposed to represent the heat given
to the (total) system anddW denotes the work done dg; /dt=p;, ®
by the system. The statistical entropySy t)=
—Jdpdqgdz{q,p,zt)Inf(g,p,zt) changes in time as dp; /dt=F(q;) + F*'= z(p;— pay), 9
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FIG. 1. Time variation of the average momentypy(t). Fort

. ) FIG. 2. Time variation of the frictiorz(t), Egs.(9) and(10).
=200 an external forcé®'=0.3 is exerted on particles. 'me variat ictionz(t), £qs.(9) (10

the system is in equilibrium and we observe a broad peak in
2:2 (Pi— Pay Fp(ai)/(NT). (10) population aroundj=0 (=2m) whereV,(q)=1-cos() is
minimum. At t=209 the system is under effects of rather
We call Egs.(8)—(10) the Gauss model. The hed€ sup- strong external force and the distribution has a broad bump

plied by a thermostat is defined to be the work done by g@&roundg=1. Whe”F_eXt>_o’ particles are on average moving
thermostat, which is expressed @@= —z3(p;— Pa)dq; , in the positive directioriFig. 1) and it is natural that particles
thus pile up in a region where particles are just going to collide

with the potential barrier oV ,(q) before jumping over it.
dQ/dt=—NTz=TA, (11)  This bump is also observed for a stochastic thermostat as
will be shown later(Fig. 5. As time still goes on we observe
where the rate of expansiok of the phase space is easily a rather spiky distribution[Fig. 3(c)], meaning that the
calculated for the Gauss model aNz. Defining the inter- 10000 particles are confined to a small area in the configu-
nal energy byU=S[p//2+Vy(q;)], we readily see that ration space. In fact it is observed that for 300 H(t)
_ oxt B consists of two spikes, which represent two clusters of par-
dU/dt=Np,F**=NTz=—-dW/dt+dQ/dt, (12  icles, one consisting of about 4000 particles, moving with

which expresses the first law of thermodynamics. The statig'® Velocityv;=2 and the other 6000 particles located near

tical entropy Sy{t) for the distribution function the origing=0 with the velocityv,=0 (see Fig. 4 We note

_ 1. ; I . ... that this is consistent with Eq7) with T=1 and (p,)s
Iigsq'}'{p'}’t)’ defined similarly as just above E(), satis =0.8. As for a histogranH(t) in a momentum space we

observe quite similar tendency. That id,(t), which is
dS(t)/dt=—N(z)=T"1d(Q)/dt=dSy(t)/dt, (13 nearly Maxwellian fort<<200, is shifted to positive direction
and becomes very spiky after introduction of an external
where we have introduced the thermal entrd@y in Eq.  force. Finally fort>300 we observe only two bins which
(13. contain weight(see Fig. 4. What is presented here in Fig. 3
We solved numerically Eqs(8)—(10) for V,(q)=1 together with Fig. 4 shows that the support for the distribu-
—cosf@) with use of the Runge-Kutta algorithm. Initialld  tion function is shrinking continually, in accordance with the
particles’ positions are chosen from a uniform distribution inpositivity of (z)¢; which is related to the rate of expansian
the range(0,27). On the other hand) particles’ momenta of a phase space via=— Nz We remark, however, that the
are first taken from a Maxwellian distribution with zero drastic change in the distributiofor histogramy does not
mean at temperature and then adjusted so as to satisfy thehave any apparent effects on behavior of observables such as
relation (7) (with p,,=0) exactly. In Figs. 1 and 2 we show the average momentupy(t), Fig. 1, as was noted by Ho-
pa(t) andz(t) as a function of time for the system withh  lian, Posch, and Hoovd#]. Based on this fact we present
=10000 andT=1. For 0<t<200 we putF®'=0 and the the following argument on the entropy production First
system attains an equilibrium state aroutw100. At t we decompose entropy change time) dSof the system as
=200 we switch on an external foré&™'=0.3. The friction  contribution from heat flow from a reservoitS, [see Eqg.
constantz and the average momentypy, rapidly respond to  (13)] and the one from irreversibilitydissipation dS, dS
the field. In a nonequilibrium stationary state, iiene) av- =dS,+dS. Since one may pudS=0 in a stationary state,
eragespayst and(z)g are 0.8133 and 0.2441, respectively, it yields o=dS /dt= —dS;/dt. For similar argument to ob-
thus ensuring the overall constancy of the internal enétgy tain the relationo= —dS;,/dt, see Ref[6].
[see Eq(12)]. In Fig. 3 we plot a histograri,(t) of posi- Thus far we considered effects of some mechanical ther-
tion of N=10000 particles at three time windowss179  mostats(the Nose-Hoover and Gaussian thermogtafisr
[Fig. 3(@)], 209[Fig. 3(b)], and 229[Fig. 3(c)]. Fort=179  which it turned out that the statistical entroBt) de-
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FIG. 3. The histogranti (t) of position ofN=10 000 particles
at several time windowg,=179 (a), 209 (b), and 229(c).
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FIG. 4. The histogramH(t) (thin curve and H(t) (thick
curve att=310.

dg/dt=p, (14
dp/dt=F,(q)+F®'-zp+R(t), (15)

with the following fluctuation-dissipation relation:
(ROHR(t"))y=2zTs(t—t'). (16)

The Fokker-Planck equation for the Langevin model, Egs.
(14-(19), is

of(a,p;t)/at=—a(pf)laq—a( —zp+Fp(q)+Ff ) ap

+2T?f19p>. (17
Heat flow from the Langevin thermostat to a particle is de-
fined, as for the Gauss model, to 8=[ —zp+R(t)]dq,
which is expressed from E@l5) as

dQ=d(p?/2+V,(q))—-F™dg=dU+dwW, (18
wheredU denotes the increment in the internal energy and
dW denotes the work done by the system. For the statistical
entropyS,{t), we can derive from Eq17),

dS )/ dt—(LM)[d(U)(t)/dt+d(W)(t)/dt]
=dS,,/dt—dS,/dt

=(z/T)f dpdd T(af/ap)/ f+pyF]12=0. (19)

Equations(18) and(19) may be regarded as the first and the
second law of thermodynamics for the Langevin model.
Equation (19) [also Eq.(21) below] should be compared
with Eq. (13), which states tha;, is the same witls,,. For

creased in time like—ot in a nonequilibrium stationary the Langevin thermostat we had&,(t)/dt=0 in a station-
state. Below we briefly consider the Gulton staircase in conary state, because the distribution functibfq,p;t) ap-
tact with the Langevin thermostat in order to contrast meproaches a nonfractal stationary ohgq,p). From Egs.

chanical thermostats to stochastic thermostd@g The

(18) and (19) we see thugdS;(t)/dt—0, d(U)(t)/dt—0

Langevin equation for a particle in a Gulton staircase isand —d{W)(t)/dt=F®¥p),>0. This means that the ther-

given by

mal entropy behaves like ot for a stochastic thermostat.
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In the overdamped limiz>1, to be called the Smolu- 2 : ‘ ™
chowski model for the reason stated below, we gptdt
=0 in Eg. (15 and have a Smoluchowski equation,

af(q;t)/ ot=—z"Ya((Fp(q)+Ff ) aq—Ta*t19q%}

S1
=—dj(a;)/aq. (20 2
If we absorbz in Eg. (20) in a new time scale, we have Eq. ﬁ ‘\ 1
(16) of Ref.[9]. We have from Eq(20), g |
T | ! |
dSudt)/dt—(LT)d[(U)(t) +(W)(1) /dt 200

=(zT)"Y[dV,(q)/dg+TdIn f/dq]?), (21

where the internal energy is now defined byU =V (q)
andV,=V,—F®{ as beforg10].

From the above it is seen that as for the thermal entropy q
Sin(t) the.stochast.ic and mechanical reservoirs g.ivt'a the same FIG. 5. Stationary distribution functiofy(q) obtained from the
?riér;,p\;?;lz:\?;z\(/giﬁfé Sl‘—:cil}vzvfirr ft?]rétr:ei}]aélﬁré(;?l r:g_- Sm_oluchowski_ eque_ltio_(QO)_. The dottted curve repres_ents the equi-

. - librium (canonical distribution forF*'=0 and the solid curve rep-

ervorr andd%t(t)ldt_)o. as.t—m for the .StOChaSt.IC FESer- osents the nonequilibrium distribution f6f*'=0.3 atT=1. The
voir. Finally we show in Fig. 5 the stationary distribution dashed curve is for the caB€'=0.3 but at lower temzperatufie
f(q,t—=) which is obtained by solving the equatian _ 4
= const withj defined by Eq(20) [9]. As was seen in Fig.

3(b) for the Gauss model, we see a bump in the region whergangevin thermostat, in terms of the hei@ absorbed by the

particles are just in front of the potential barrier whose centetystem aso=—T dQ/dt=—dS,/dt. For a mechanical

is located atg=. This becomes more salient as the tem-mqgel, o is also given in terms of the statistical entropy,
perature goes down. Thus the piling up of particles in th&rom Eq.(13). Finally it is remarked that the clustering phe-

((j;ulton_stawcase is seen to be a rather general aspects Qhmenon mentioned above, which has gathered lots of atten-
ynamics.

. i tion recently in connection with synchronization or more
Summarizing this paper, we have proposed the Gausgenerally with population dynamics of coupled oscillators

model, Egs.(7)—(10), as a mechanical thermostat for the [11] shows that apparently a rather complex-looking prob-
Gulton staircase and compared it with the Langevin thermorem turns out to be simple at the nonequilibrium stationary

stat. The Gauss model enables us to properly introduce tendtate, on which current interest is concentrdH In con-

peratureT and formulate the law of thermodynamics consis-rast with stochastic thermostats, studies on properties of me-

tently. As expected we observed from numerical simulationgpanical thermostats may be said to have just begun and
positive average frictioz) (Fig. 1) and the mass current many fundamental insights on statistical mechanics are ex-

(Fig. 2. We found that the phase space shrinks in the COUrSBacted to be revealed in the near future.

of time very rapidly leading finally to only two clusters each

composed of many particlesee Fig. 4. At this stage of We have benefited greatly from discussions with K. Ki-
time evolution, the whole dynamics is reduced to a problentahara at an early stage of this study. This paper was sup-
of a few or several degrees of freedom. As for the entropyorted by the Japanese Grant-in-Aid for Science Research
production rateo, it is defined, for both a mechanical and a Fund from the Ministry of Education, Science, and Culture.

[1] D. J. Evans and G. P. MorrisStatistical Mechanics of Non-

[7] D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev. A

equilibrium Liquids(Academic, New York, 1990 42, 5990(1990.

[2] W. G. Hoover,Computational Statistical Mechani¢Elsevier, [8] For the heatdQ absorbed by the system, see Efjl) for a
Amsterdam, 1991 Gaussian thermostat and E48) for a Langevin thermostat.

[3] B. L. Holian, W. G. Hoover, and H. A. Posch, Phys. Rev. Lett. [9] T. Munakata, A. Igarashi, and T. Shiotani, Phys. Re\6TE
59, 10 (1987). 1403(1998.

[4] B. L. Holian, H. A. Posch, and W. G. Hoover, Phys. Rev. A [10] We note that the worklW= — F®'dq done by the system was
42, 3196(1990. . . included in the energdE=dU+dW in Ref.[9]. Of course,

[5] W. G. Hoover, H. A. Posch, B. L. Holian, M. J. Gillan, M. discussions on entropy production developed there is intact.
Mareschal, and C. Massobrio, Mol. Simdl. 79 (1987.

D. Ruell Bh 101 i I and E [11] Y. Nakamura, F. Tominaga, and T. Munakata, Phys. Rev. E
[6] D. Rue e,.J.. Stat. Phy85, 1(1996; G. Gallaavotti and E. G. 49, 4849(1994), and the references cited therein.
D. Cohen,ibid. 80, 831(1995.



